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Polydisperse star polymer solutions
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We analyze the effect of polydispersity in the arm number on the effective interactions, structural correla-
tions, and phase behavior of star polymers in a good solvent. The effective interaction potential between two
star polymers with different arm numbers is derived using scaling theory. The resulting expression is tested
against monomer-resolved molecular dynamics simulations. We find that the theoretical pair potential is in
agreement with the simulation data in a much wider polydispersity range than other proposed potentials. We
then use this pair potential as an input in a many-body theory to investigate polydispersity effects on the
structural correlations and the phase diagram of dense star polymer solutions. In particular, we find that a
polydispersity of 10%, which is typical in experimental samples, does not significantly alter previous findings
for the phase diagram of monodisperse solutions.

PACS numbd(s): 82.70.Dd, 64.60.Fr, 61.20.Ja, 61.4&.

I. INTRODUCTION ics and colloid physics, thus also attracting interest from a
purely theoretical point of view. Star polymers with small
A star polymer consists of linear polymer chains tetheredarm numbers f(=1, and 2 resemble linear polymers. Thus
to one common central core. The number of polymer chaingheir configurations show a considerable aspheri@ty10],
fis usually referred to agrm numberor functionality. If the  although their chain-averaged number density of monomers,
degree of polymerization, i.e., the number of monomers peg(r), is spherically symmetric around the center of mass of
chain,N, is the same for all chains, the star polymer is calledthe polymer. With increasing arm numbkrthe asphericity
monodisperse with respect % or “regular.” For largeN,  of the stars has been shown to decrease considefably
the size of the central core particle is much smaller than tha 9], leading to “stiff” spherical particles in the limit of high
overall extension of the whole star. For a single star, thd. It is essentially in this limit that a description of star poly-
density of monomers around the central partieldr), is  mers as sterically stabilized colloidal particles holds. This
radially symmetric, and from this density profile the so-polymer-colloid hybrid character of star polymers was ex-
called corona diameter, which measures the extension of plored in a number of publications dealing with the structural
the star, can be defined as the diameter of a sphere arouf®7,20-32 and dynamical23—-25,33—38properties of star
the star center where alNf monomers are found polymers.
“inside” [1]. In the usual theoretical description, star polymers in dense
In the last years, star-shaped polymer aggregates have a&plution are considered as an effective one-component
tracted a considerable amount of interest from both experitmonodispersesystem, i.e., all the stars have the same arm
mental and theoretical points of vie@—4]. The reason for numberf and all the linear polymer chains attached to the
this is threefold. First, from a technical point of view, star center have the same molecular weight. While the latter can
polymers are important for several industrial applicationsbe realized by a careful preparation method, the former is in
[2]. One example are hydrogenated polyisoprene star polygeneral not true in actual samples. The preparation of star
mers, which are used as viscosity index modifiers in oil in-polymers proceeds by adding linear polymer chains to a den-
dustry applications due to their excellent shear stability. Furdrimerlike core with reactions centers placed at the end of
ther, commercial star polymers are brought into action inthe dendrimer and the polymer chains. The chemical reaction
coating materials, as binders in toners for copying machiness typically incomplete, such that few of the reaction centers
and in several pharmaceutical and medical applicati@fs at the dendrimer are not linked to a linear chain. Hence an
Second, from an experimental point of view, the recent synintrinsic polydispersity in the arm number arises. By ultra-
thesis by Roovers and co-workd&s6] of regular star poly-  centrifugation one can estimate the relative polydispersity in
mers with various possible numbers of arms made it possibléhe arm number to be around 5—15 % in carefully and slowly
to explore the physics of well-defined model systems, whictprepared samples. However, it can also be much larger for
are monodisperse in both the number of arms and the degréast reaction$39,40. In a comparison between experimental
of polymerization. Important examples are polyisoprene stargata and theory, in almost all previous studies the assump-
with =8, and 18[7] and polybutadiene stars witlfi  tion of a monodisperse sample was implicitly made such that
=32,64, and 1286], both synthesized by anionic polymer- a natural question concerns the influence of polydispersity on
ization. Third, star polymers constitute an important soft-the statistical properties of star polymer solutions. As far as
condensed matter system, linking the fields of polymer phystheory is concerned, the situation closely resembles the case
of colloidal suspensions where the effect of charge and size
polydispersity has been a topic of intense recent research; see
*Present address: Central Research Division, Bayer AG, D-5136Refs.[41—46 for recent reviews.
Leverkusen, Germany. In this paper, we investigate the effect of arm number
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polydispersity on the effective interaction, the structural cortems in which the polymers are collapsed or are near the
relations, and the phase diagram for star polymer solutions inollapse transition. A family of additional exponenjgs gov-

a good solvent. Our work is based on a theoretical analysisrns the scaling of the partition functiodg(N) of polymer
using scaling theory and computer simulations. We first destars off chains each wittN monomers, while the power law
rive the effective interaction between two star polymers offor the radius of gyration remains unchanged:

different arm number$, and f, from scaling assumptions.

Basically the interaction is logarithmic with the core-core Ri(N)~N" and Z(N)~z"NN"7=172), i)
distancer between the two stars, but the prefactor depends

explicitly on f,; andf,, and differs from that of a monodis- 1h€ exponents of any other power law for more general
perse sample. The resulting pair potential is tested again®°lymer networks are given by scaling relations in terms of
molecular simulations, and good agreement is found ever and v [52—54. Note that Eqs(1) and(2) imply 7;=0.
whenf, is very different fromf,, while earlier descriptions 1he values of these exponents are known from RG and
[47] are found to hold for small polydispersities but to be tooMonte Carlo(MC) simulations[55]. In the limiting case of
simplistic for large polydispersities. In a further step towardMany armsf>1, the leading behavior of; is given by[56]

a full description of dense star polymer solutions, we then 3

perform computer simulations of classical many-body sys- it @)
tems interacting by means of this effective pair interaction.

, . o a result that has been found also from geometrical consider-
We find that a polydispersity in the arm number reduces theations using the blob model of a star polyni2é]. The scal-

sFructuraI gorrelqtions, bUt. this effec; _is less drgstic than fOfng law for the partition sum of two star polymers may be

size polydispersity in sterlca!ly stabilized colloidal SUSpen-yaived from a short distance expansi&7,58. The parti-

smns._FurtherZ we present ewdence_ that the reentrant meltlrjdq)n sum of the two starg; ; (N,r) at small center-to-center

behavior predicted from the theoretical treatment of a mono- ) L2 i )

disperse descriptiofi21,30,31,48 does not change drasti- distanceg factorizes into a functlorCflfz(r) and the parti-

cally in a polydisperse solution of star polymers. tion function 2 ¢ (N) of the star withf; +f, arms that is
The paper is organized as follows: In Sec. Il we presenformed when the cores of the two stars coincide:

the scaling ideas and derive the effective interaction potential

between two stars of different arm numbers. A test of this Zi1,(N,1)~Cy 1 (1) 25 41, (N). (4)

result against molecular computer simulation is performed in

Sec. lll. Results for the structure and phase diagram from &uch a behavior is generally assumed in scaling arguments.

simulation of a many-body system are given in Sec. IV. Fi-At a large star-star separatioﬁflfz(N,r) is the product of

nally, we conclude in Sec. V. the single star partition functions. Again we may argue that
the ratio of the partition function of two stars at finite sepa-
Il. SCALING THEORY FOR AN EFFECTIVE POTENTIAL rationr to that at infinite separation can only be a functi®n

S . of r/Ry, noting thatR; is the only relevant length scale in
The effective interaction between two star polymers Chis problem R, and R, differ from R, only in an
sults from the steric interaction of all monomers that consti- P f1 f2 1 y

tute the polymer chains on each of the stars. It is obviously &dependent prefactpr

formidable task to derive the effective potential from first

principles. Luckily we are in the position to give a rigorous Z1,1,(N.1)~ B 1, (1/R1) 21, 24, (5)

result for the limiting case of short distance between the twa_ . . . . .
star cores, while good arguments exist for the description of 2King this into account and inserting the power law scaling

the long range part of the interaction. In the treatment of théccording to Eqs(1) and(2), we find that Eqs(4) and (5)

interaction of monodisperse star polymers we have foun@'® Only compatible iC(r) also follows a power law

that the combination of these two approaches leads to good O

agreement with simulation results, as well as with scattering Crr, () ~170, (6)

experiments on real star polymer systei28,49,5Q.

We first derive the short distance interaction using scalingind the so-called contact EIXIOOH@ﬁ)f2 obeys the scaling

arguments. Many details of the behavior of polymer solu-relation

tions may be derived using renormalization gro(RG)

analysis[51]. Here we use only the more basic results of @ﬁj)fz: N, M, Mt 4ty (7)

power law scaling: the radius of gyratid (N) of a single

linear polymer chain wittN monomers and its partition func- Note that in terms of the RG of polymer field theory the

tion Z;(N) are found to obey the power laws exponentsy; correspond to dimensions of operators associ-

, NN 7 ated with the partition functions of single stdris4], and

Ri(N)~N" ~and  Zy(N)~z"N"""2 (1) relation(7) is a direct consequence of the short distance ex-

The fugacityz measures the mean number of possibilities goPansion. The mean forCEfle(r) acting on the centers of
add one monomer to the chain. It is microscopic in naturetwo star polymers witff; andf, arms is now derived as the
and will depend on the details of the theoretical model or theradient  of ~ the  effective  potential V°(r)=
experimental system. The two exponemtsand 7,, on the ~ —KgT 109 Z¢ 1,(r)/(Z¢ Z¢,) ], with kgT denoting the ther-
contrary, are universal to all polymer systems in a good solmal energy. For the force at short distancgthis evidently
vent, i.e., excluding a high concentration of polymers or sys+esults in
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o) The decay length k=20+/\/f is the diameter of the out-
Fr,r, (1) =kgT rl z. (8)  ermost blobs of the star polymer in the Daoud-Cotton model
[1,28].

] o In a simple but successful approach, the full potential for
Using the above many arm limit fap¢, one may match the he interaction between twbarm star polymers was con-
contact exponent®{? to the known values fof=1,2[59],  structed by concatenating the long and short range potentials.
fixing the otherwise unknown prefactor in E§). Assuming  |n this model the crossover from short to long range behavior
that the behavior of th®{;) may be described by this ap- takes place when the distance of the two coresqis It is
proximation for allf, one finds: natural to generalize this to two star polymers wfifrandf,
arms, in such a way that the crossover point is at distance
o= (Ufl+ crfz)/2. It is less obvious how to choose the decay

length of the long range part. Our choice;ﬁfllle1

+1/k;_ is in accordance to the simulation results presented

This matching in turn suggests an approximate value for thg i\, ” Note that although we have omitted the subscripts on
7t €xponents, taking into accoun; =0 and 7,~ —5/18: o and «, the latter are functions df; and f,.

The full potential then reads

3/2

Fff(f)“kBTl—ST- 9

5 f32—f
= —. (10
362-1 In
r):@(s)

r

o

+ for r<o

1+ok
Inserting this into the general formula for the interaction of kB_TVfle(

faf2 1 o
two different star polymers, the contact exponent reads, for Tt ox FeXF(O'K—rK) for r>o.
largef, andf,, (15)
5 1 In the monodisperse ca$e= f, this potential reduces to one

®$‘i)f2:3_6 E[(fﬁf2)3/2_(fi/2+f2/2)]- (1D petween two identical star polymers that was successfully

tested in extensive simulations. Note that ato the concat-
enated potential is smooth with a continuous first derivative,
hile the second derivative is in general discontinuous. Thus
this approximation the force has a discontinuous slope at
=0, as seen in the plots of Figs. 4 and 5 below.

We note that on a phenomenological level there are oth
possibilities to describe the interaction in a polydisperse sysq,
tem of star polymers. In colloidal systems two other ap-,
proaches to the interaction of polydisperse particles are com-
monly used: In a steric stabilized system with a
polydispersity in the radii of the particles, one expects to find
an interaction radius that is treithmetic mearof the radii We have performed molecular dynamics computer simu-
of the two interacting particleigi4,60. In a charge stabilized |ations of two star polymers with different arm numbéss
solution, on the other hand, the interaction of two particles is;ng f, by resolving the monomers as classical beads along
proportional to the product of the two charges, and the effecine chains. We use the same simulation model as in previous
tive charge is calculated as tigeometric mearof the two gy dies of star polymer solutions in a good solvet,63.
charges. The latter description was used in an earlier inveSrhe arm length, i.e., the numbet of beads along each
tigation of star polymers treatinggs an ‘.‘effective charge” chain, was kept fixed t&l=50 and 100, which in previous
parametef47,61,62. For comparison with these other pos- york was shown to be large enough to guarantee a sufficient
sible approaches, we define scaling behavior. The main features of the simulation model

can be summarized as follows.

Ill. COMPARISON WITH SIMULATION RESULTS

0@ ( :i fi+fp)%2 (12 (1) A purely repulsive and truncated Lennard-Jones po-
fifa 18\ 2 ' tential acts between alNI(f;+f,) monomers at distances
12 6
5 oLy oLy 1 —o1/6
— ==+, rs2
09, (N =15(Vf1f2)* (13) Vo(r)= ( : ) ( r ) 4l 7L
0, r>21/60'|_J.

We now turn to the interaction at larger separation. It was
recently shown that a Yukawa-like tail for the potential be-Here e sets the energy scale, and, the length scale of the
tween star polymers reproduces the results of both simuldPeads.
tion and scattering experiments for monodisperse solutions (2) An attractive finite extensible nonlinear elastic poten-
[28,49,50. The natural scale for a star polymer is the coronatial (FENE) additionally acts between neighboring mono-
diametero=2\R;, with \~2/3[49]. For the potential be- Mers along a chaif63]:
tween twof-arm star polymers at a distance o;, one has R |2

—156<—°) In

%)
1-|{ =] |, r=Rg
oL Ro

oo r>RO

Vch_

1
fo(r)~Fexp(—r;<f). (14
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TABLE |I. List of the simulatedf,-f, combinations and the
corresponding results fo)\=<r/(Rf1+ sz). N is the associated
monomer number per arm.

f, f, N A

3 5 100 0.511

5 10 100 0.643

5 18 100 0.667
10 18 50 0.675
10 30 50 0.673
10 50 50 0.692
18 30 50 0.696
18 50 50 0.668
30 50 50 0.714

and usex as a fit parameter to fit the full force versus dis-
tance curve for given arm numbefrsandf,. The results for

the optimal fit parameter are shown in Table I. We obtain an
averaged value gf\ )~0.66, which is nearly independent of
f, and f,. Thus the results found here are consistent with
those from the previously investigated monodisperse case
[49]. We further remark that this value coincides with that

This interaction diverges at=R,, which determines the Used in Ref[28] to fit experimental data fof =18, and that
maximal relative displacement of two neighboring beads. A\ is independent oN, consistent with scaling theory.

(3) To accommodate the polymer arms, a hard core with Results for the comparison between theory and simulation
radiusR® is introduced at the center of the stars. The coregre shown in Fig. 2, where the reduced inverse mean force
interact with the monomers according to the above menl/F¢ ¢, between the star centers is plotted versus the inter-
tioned potentials with a separation shift Rf®). core distance for two arm numbers$ ;=10 andf,=50. We

Two stars with arm numberfs, andf, were fixed at core observe two important facts: first, the data indeed fall on a
separationr. After a long equilibration period, the total force straight line, proving the logarithmic behavior of the poten-
Fy,1, acting on the cores was averaged. The temperdture tial inside the mean corona. The straight line hits the origin

was kept constant. Both the equilibration time and the timedt r=2R, showing the relevance of the finite core in the
during which averages were performed was about x000Simulations. Second, the inverse sldpg ¢, agrees very well

wherer= Vmo?/ € is the Lennard-Jones time unit with e, with the theoretical prediction also shown in Fig. 2. A simi-
andm denoting the Lennard-Jones |ength, the energy Sca|é?r behavior Wa.S Ob-SQrVed for all other combinations of arm
and the monomer mass. A simulation snapshot is shown ilumbers contained in Table I.
Fig. 1. When comparing the mean force to the derivative of In Fig. 3, the prefactoi®; ¢, is plotted versusf,, at a
the theoretical effective potential, two technical problems
arise:(i) In contrast to the theory, we have a finite core size
R which is the same for both star§i) The two corona f,=10,£,=50 3
diameterso; and (f=1f,,f,), which enter into the potential 004+ A _ 50 P
of Eq. (15), are not directly accessible in a simulation. ~
As in the monodisperse ca$49], difficulty (i) is over-
come by plotting the inverse forceFJf/lf2 versus distance.

The divergence in the force already occurs at core separa-
tionsr=2R@ which leads to a zero in theRy ¢, plot. The . Theory

inverseslopeof the 1Fflf2 plot then corresponds to the pref- o ———— Fit
actor@%i)f2 of the logarithmic term in the effective pair po- A * Simulation

tential. It is this slope which can be directly compared to our 0.00 s ,
theoretical predictiofiEq. (15)]. Furthermore, a linear func- 0.0 0.5 1.0 1.5

tion in the 1Ff1f2 plot is a direct check for the validity of the r/R,,

Inr term in the effective interaction potentidEq. (15)]. )
To handle difficulty(ii), we consider the radius of gyra- ~ FIG. 2. Reduced inverse forégT/(RyFy 1) between the cen-
tion Ry of each star, which is readily accessible in a simula-ers of two star polymergfor f,=10, f,=50, andN=50) vs re-

tion of a single staf49]. We assume a proportionality be- duced distance/Ry,, where Ry,;=(Ry, +Ry,)/2. The error bars
tweenR; and o were obtained by averaging over the results of ten independent

simulations. The dashed line is a linear regression of the data. The
oi=2\Rs, (16 solid line is the theory from chapter Sec. II.

FIG. 1. Snapshot of two interacting star polymers wiijh= 18
andf,=10 arms(dark and bright spheres, respectively

0.02 S

kTR, F,
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FIG. 5. Logarithm of the reduced force, Rl(zFfle/kBT), VS
reduced distancer - 2R(¥)/R,,, for f;=10,f,=18, andN=>50.
The error bars were obtained by averaging over the results of ten

fixed valuef,=10, and compared with the different theoret- independent simulations.

ical predictions in Eqs(11)—(13). Of course, in the mono-

disperse casg, = f,=10, all the different theoretical expres-
sions forflf2 coincide, and agree well with the simulation,

consistently with our earlier worfd9]. For increasing asym-

distancer by plotting the logarithm of the force versus dis-
tance. The crossover of the inner-core data to a straight line

metry betweerf, andf,, significant deviations between the outside the core is clearly visible. Within the simulation error
predictions of(a) an aritﬁmetic ol(g) a geometric mean, and bars, the slope is consistent with the theoretical prediction
the simulation results become visible. While the expressiorEEq- (19)].

@%i)fz gained from scaling theory is able to describe the slope

even for large asymmetrie@,%‘i)f2 is worse at large asymme-

tries, while ??}2 even possesses the wrong curvature as a

function of f,. Similar conclusions hold for other combina-
tions of f; andf,.

In Fig. 4, we show the forceFflf2 versus distance

IV. POLYDISPERSITY EFFECTS IN DENSE STAR
POLYMER SOLUTIONS

To explore the effects of arm number polydispersity on
the structure and phase behavior of dense solutions of star
polymers, we further performed large scale Monte Carlo

() B . . simulations using the pair potential approach, as given by the
R™, scaled byR;,=(Ry, +Ry,)/2, comparing the theoreti- ,ential in Eq.(15). Thus, on the one hand, this approach

cal force with simulation results for three casés=10,18,  closely corresponds to our recent work on the structural and

and 30;f,=50; andN=50. Note that formally the core size phase behavior of monodisperse star polymer solu{i2@s

R vanishes in the theory. There is a good overall agrees1], and, on the other hand, is quite similar to investigations

ment inside the corona region between theory and simulasf polydispersity effects in solutions of hard spheres

tion, even for large asymmetries 6f and f,. Results for  [44,60,64,65 and charged colloidal particlg5,61,62,6%

distances outside the corona,> o, are presented in Fig. 5. available in the literature.

Here we test the exponential decay of the fquclefz with In our MC simulations, representative particle configura-
tions of approximately 2000 star polymers in a cubic simu-

500 o lation box were created in the following manner. First, a
‘ﬂ starting particle configuration was built up by placing the
IR . . . .
it *f,=10 particles on random positions in the box, each particle as-
W " f,=18 signed an arm numbérchosen from a Gaussian distribution
(Y J— ——
o Wl W\ *£,=30 g(f) of meanf and variance= /f2—f2:
A8 i\ \\’\
LL;:‘: 00 | \ f,=50,N=50 o ) 1 - "
4 = exg — —(f— .
[y - 9 pvV2m 2p?
‘ . We use Eq(17) above todefinethe polydispersityp in what
%0 0.5 1.0 15 2.0 follows. The Gaussian distribution chosen to describe arm
(r_2R(d’)/R12 number polydispersity agrees well with experimentally-

determined arm number distributions of star polymers syn-
thesized by anionic polymerizatig60]. Note that nonphysi-

cal, negative arm numbers, which are in principle not
prohibited by a Gaussian arm number distribution, did not

FIG. 4. Simulation resultfsymbolg and theoretical results
(lines) for the reduced effective fordey,Fy ¢, /kgT vs reduced dis-
tance ¢ —2R@)/Ry,.
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FIG. 6. (a) Radial distribution functiorg(r) and (b) center-to- FIG. 7. (a) Radial distribution functiorg(r) and (b) center-to-

center structure factoB(k) for polydisperse star polymers in the center structure factd®(k) for f =40, »=0.5. Polydispersitiep as
fluid state. In the MC simulations, the average arm number has beéndicated in the figure.

chosen ad =32, and the mean packing fraction @s-0.5. Poly-

dispersitieg as indicated in the figure.

with varying polydispersitiep were performed ataverage
_ arm numbersf and mean packing fractiong, known to
occur in the simulations for the values éfand p chosen  correspond to the liquid state in the monodisperse gase
here. Second, an equilibration phase of approximately=0 [30,31. We show typical results fog(r) and S(k) in
50000 MC cycles was performed by allowing both transla-Fig. 6. As can be seen, increasing the polydispersity leads to
tional particle motion according to the standard Metropolisdecreasing spatial correlations in the fluid, indicated by a
scheme, and particle exchanges of randomly chosen particllecreasing principal peak height of botjfr) and S(k).
pairs, again using the Metropolis rule to decide whether exThus, as expected, the effect of arm number polydispersity in
change will happen or not. For the calculation of pair poten-star polymer solutions is quite similar to the effect of charge
tial energies, Eq(15 was used, together with the scaling polydispersity in solutions of charged colloif#5,66. Note
relation[1] that the anomalous behavior 8{k) reported for monodis-
perse star polymer solutions in RE29] also holds for poly-
s disperse star polymer solution for all simulated polydispersi-
ﬂ:(f_l) (18) tiesp<14.
oy, fo] In order to explore the evolution of the freezing and re-
entrant melting phase transitions found for monodisperse star
polymer solutiong 30,31 with increasing polydispersity, we
After the equilibration phase, approximately 100000 MCemployed the following strategy. We performed a number of
cycles were simulated to gather statistics for both the radiadimulations at state points corresponding to the solid phase in
center-to-center distribution functiqg(r) and the center-to- the monodisperse case, graduaIIy increasing the parameter
center structure factos(k) [41,42,44,45,6F In what fol- |, particular, we chosé=40 and7=0.5 in a first set of

lows, we will useo= oras| the basic length scale, and the simulations. Our results fay(r) and S(k) are given in Fig.
mean packing fractlom poml6 (p being the number den- 7. Let us begin with the discussion of tigér) data. As the
sity of the starsas a measure of the density. monodisperse cage=0 corresponds to a solid state of bcc
In order to investigate the polydispersity effects on thesymmetry[30,31], the showng(r) is, in fact, the radially
liquid structure of dense star polymer solutions, simulationsaveraged pair correlation function of the stars in the crystal
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state! Again, increasing leads to decreasing structural cor- relations between star polymers in a good solvent. An ana-
relations between the particles, indicated by a decreasinigtical expression for an effective pair potential, given by Eqg.
principal peak height and a “smearing out” of the sub peak(15), was put forward, and its validity was confirmed by
structure ofg(r) seen forp=0. This scenario also manifests molecular dynamics computer simulation. This pair potential
itself in the structure factors shown in FighJ. Note that the  was subsequently used to simulate structural correlations be-
corresponding structure factor fop=0 exhibits strong tween many stars. As expected, correlations decrease with
Bragg peaks, again indicating the monodisperse system to kgcreasing polydispersity. At the same time, however, the
in the crystal state fof =f=40 and»=7=0.5, and is not effect is much less pronounced than for size-polydisperse
depicted for this reason. For nonzero polydispersities théxard spheres. This can be seen in analogy to colloidal sus-
simulated structure factors do not show Bragg peaks, and theensions, where size polydispersity of sterically stabilized
value of the principal peak heigh&.., decreases. Thus in- suspensions is known to lead to much more pronounced ef-
creasing the polydispersity in a sample of star polymers afgcts than charge polydispersity in charged suspension. The
f=f=40 andn= =0.5 leads to a melting transition from a microscopic reason for this is that the effective interaction is
bcc crystal to a fluid phase. We therefore expect polydis-much softer for charged colloids, which is similar to our case
perse star polymer solutions to show an enlarged fluid phasgf star polymers.

region as compared to the phase diagram of monodisperse \we finish with a couple of remarks: first it would be in-
star polymers in Refs[30,31]. Furthermore, the stability teresting to compare, both qualitatively and quantitatively,
range of the fluid phase is expected to increase with increagsy theoretical predictions to experimental data. In fact, the
ing polydispersityp. To corroborate this expectation in more jntrinsic polydispersity in the arm number can be measured,
detail, we performed further MC simulations of polydisperse,ng stryctural correlations are accessible, e.g., by neutron
star polymers for various state point (), all correspond-  scattering of a star polymer solution with marked cores. Sec-
ing to state points close to the freezing line or reentrant meltpng, it would be interesting to map out, for a given polydis-
ing line in the monodisperse caf&0,31). For the ranges of persity, the full phase diagram, including freezing into dif-
polydispersity examined herg+14), no change in the to- ferent solid structures. Also, it would be interesting to
pology of the phase diagram and no new crystalline phasegeyelop and apply a liquid integral equation theory to predict
were found as a result of po!ydlsper3|ty. A quantitative cal-stryctural correlations in a polydisperse star polymer solu-
culation of the full phase diagram by more sophisticatedjons. The output of such a theory could be checked against
simulation method$64,69 is beyond the scope of this pa- oyr computer simulation data of Sec. IV. Third, we have not
per, and will be left for future studies. considered a polydispersity in the length of the linear poly-
mer chains attached to the centers. It would be interesting to
study this theoretically, and compare the results to samples

In conclusion, we have analyzed the effect of arm numbeprepared in such a way that different linear chains are

polydispersity on the effective interaction and structural corbrought to the reaction centers of the dendrimers. Work
along these lines is left for future studies.

V. CONCLUSIONS

!n fact, from the typical particle-particle distances read off from ACKNOWLEDGMENT
the pair correlation function, it can be concluded that the crystal
structure is bce, a result which is in agreement with calculations of This work was supported in part by the SFB 237 of the
bond order correlation functior81]. Deutsche Forschungsgemeinschatt.
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