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Polydisperse star polymer solutions

C. von Ferber, A. Jusufi, M. Watzlawek,* C. N. Likos, and H. Lo¨wen
Institut für Theoretische Physik II, Heinrich-Heine-Universita¨t Düsseldorf, Universita¨tsstraße 1, D-40225 Du¨sseldorf, Germany

~Received 31 July 2000!

We analyze the effect of polydispersity in the arm number on the effective interactions, structural correla-
tions, and phase behavior of star polymers in a good solvent. The effective interaction potential between two
star polymers with different arm numbers is derived using scaling theory. The resulting expression is tested
against monomer-resolved molecular dynamics simulations. We find that the theoretical pair potential is in
agreement with the simulation data in a much wider polydispersity range than other proposed potentials. We
then use this pair potential as an input in a many-body theory to investigate polydispersity effects on the
structural correlations and the phase diagram of dense star polymer solutions. In particular, we find that a
polydispersity of 10%, which is typical in experimental samples, does not significantly alter previous findings
for the phase diagram of monodisperse solutions.

PACS number~s!: 82.70.Dd, 64.60.Fr, 61.20.Ja, 61.41.1e
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I. INTRODUCTION

A star polymer consists of linear polymer chains tethe
to one common central core. The number of polymer cha
f is usually referred to asarm numberor functionality. If the
degree of polymerization, i.e., the number of monomers
chain,N, is the same for all chains, the star polymer is cal
monodisperse with respect toN or ‘‘regular.’’ For largeN,
the size of the central core particle is much smaller than
overall extension of the whole star. For a single star,
density of monomers around the central particle,f(r ), is
radially symmetric, and from this density profile the s
called corona diameters, which measures the extension
the star, can be defined as the diameter of a sphere ar
the star center where allN f monomers are found
‘‘inside’’ @1#.

In the last years, star-shaped polymer aggregates hav
tracted a considerable amount of interest from both exp
mental and theoretical points of view@2–4#. The reason for
this is threefold. First, from a technical point of view, st
polymers are important for several industrial applicatio
@2#. One example are hydrogenated polyisoprene star p
mers, which are used as viscosity index modifiers in oil
dustry applications due to their excellent shear stability. F
ther, commercial star polymers are brought into action
coating materials, as binders in toners for copying machin
and in several pharmaceutical and medical applications@2#.
Second, from an experimental point of view, the recent s
thesis by Roovers and co-workers@5,6# of regular star poly-
mers with various possible numbers of arms made it poss
to explore the physics of well-defined model systems, wh
are monodisperse in both the number of arms and the de
of polymerization. Important examples are polyisoprene s
with f 58, and 18 @7# and polybutadiene stars withf
532,64, and 128@6#, both synthesized by anionic polyme
ization. Third, star polymers constitute an important so
condensed matter system, linking the fields of polymer ph

*Present address: Central Research Division, Bayer AG, D-51
Leverkusen, Germany.
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ics and colloid physics, thus also attracting interest from
purely theoretical point of view. Star polymers with sma
arm numbers (f 51, and 2! resemble linear polymers. Thu
their configurations show a considerable asphericity@8–10#,
although their chain-averaged number density of monom
f(r ), is spherically symmetric around the center of mass
the polymer. With increasing arm numberf, the asphericity
of the stars has been shown to decrease considerably@11–
19#, leading to ‘‘stiff’’ spherical particles in the limit of high
f. It is essentially in this limit that a description of star pol
mers as sterically stabilized colloidal particles holds. T
polymer-colloid hybrid character of star polymers was e
plored in a number of publications dealing with the structu
@2,7,20–32# and dynamical@23–25,33–38# properties of star
polymers.

In the usual theoretical description, star polymers in de
solution are considered as an effective one-compon
~monodisperse! system, i.e., all the stars have the same a
numberf and all the linear polymer chains attached to t
center have the same molecular weight. While the latter
be realized by a careful preparation method, the former i
general not true in actual samples. The preparation of
polymers proceeds by adding linear polymer chains to a d
drimerlike core with reactions centers placed at the end
the dendrimer and the polymer chains. The chemical reac
is typically incomplete, such that few of the reaction cent
at the dendrimer are not linked to a linear chain. Hence
intrinsic polydispersity in the arm number arises. By ultr
centrifugation one can estimate the relative polydispersity
the arm number to be around 5–15 % in carefully and slow
prepared samples. However, it can also be much larger
fast reactions@39,40#. In a comparison between experiment
data and theory, in almost all previous studies the assu
tion of a monodisperse sample was implicitly made such t
a natural question concerns the influence of polydispersity
the statistical properties of star polymer solutions. As far
theory is concerned, the situation closely resembles the
of colloidal suspensions where the effect of charge and
polydispersity has been a topic of intense recent research
Refs.@41–46# for recent reviews.

In this paper, we investigate the effect of arm numb
68
6949 ©2000 The American Physical Society
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polydispersity on the effective interaction, the structural c
relations, and the phase diagram for star polymer solution
a good solvent. Our work is based on a theoretical anal
using scaling theory and computer simulations. We first
rive the effective interaction between two star polymers
different arm numbersf 1 and f 2 from scaling assumptions
Basically the interaction is logarithmic with the core-co
distancer between the two stars, but the prefactor depe
explicitly on f 1 and f 2, and differs from that of a monodis
perse sample. The resulting pair potential is tested aga
molecular simulations, and good agreement is found e
when f 1 is very different fromf 2, while earlier descriptions
@47# are found to hold for small polydispersities but to be t
simplistic for large polydispersities. In a further step towa
a full description of dense star polymer solutions, we th
perform computer simulations of classical many-body s
tems interacting by means of this effective pair interacti
We find that a polydispersity in the arm number reduces
structural correlations, but this effect is less drastic than
size polydispersity in sterically stabilized colloidal suspe
sions. Further, we present evidence that the reentrant me
behavior predicted from the theoretical treatment of a mo
disperse description@21,30,31,48# does not change drast
cally in a polydisperse solution of star polymers.

The paper is organized as follows: In Sec. II we pres
the scaling ideas and derive the effective interaction poten
between two stars of different arm numbers. A test of t
result against molecular computer simulation is performed
Sec. III. Results for the structure and phase diagram fro
simulation of a many-body system are given in Sec. IV.
nally, we conclude in Sec. V.

II. SCALING THEORY FOR AN EFFECTIVE POTENTIAL

The effective interaction between two star polymers
sults from the steric interaction of all monomers that con
tute the polymer chains on each of the stars. It is obvious
formidable task to derive the effective potential from fir
principles. Luckily we are in the position to give a rigorou
result for the limiting case of short distance between the
star cores, while good arguments exist for the description
the long range part of the interaction. In the treatment of
interaction of monodisperse star polymers we have fo
that the combination of these two approaches leads to g
agreement with simulation results, as well as with scatter
experiments on real star polymer systems@28,49,50#.

We first derive the short distance interaction using sca
arguments. Many details of the behavior of polymer so
tions may be derived using renormalization group~RG!
analysis@51#. Here we use only the more basic results
power law scaling: the radius of gyrationR1(N) of a single
linear polymer chain withN monomers and its partition func
tion Z1(N) are found to obey the power laws

R1~N!;Nn and Z1~N!;zNN2nh2. ~1!

The fugacityz measures the mean number of possibilities
add one monomer to the chain. It is microscopic in natu
and will depend on the details of the theoretical model or
experimental system. The two exponentsn and h2, on the
contrary, are universal to all polymer systems in a good s
vent, i.e., excluding a high concentration of polymers or s
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tems in which the polymers are collapsed or are near
collapse transition. A family of additional exponentsh f gov-
erns the scaling of the partition functionsZf(N) of polymer
stars off chains each withN monomers, while the power law
for the radius of gyration remains unchanged:

Rf~N!;Nn and Zf~N!;zf NNn(h f2 f h2). ~2!

The exponents of any other power law for more gene
polymer networks are given by scaling relations in terms
h f andn @52–54#. Note that Eqs.~1! and ~2! imply h150.
The values of these exponents are known from RG
Monte Carlo~MC! simulations@55#. In the limiting case of
many arms,f @1, the leading behavior ofh f is given by@56#

h f;2 f 3/2, ~3!

a result that has been found also from geometrical consi
ations using the blob model of a star polymer@20#. The scal-
ing law for the partition sum of two star polymers may b
derived from a short distance expansion@57,58#. The parti-
tion sum of the two starsZf 1f 2

(N,r ) at small center-to-cente

distancesr factorizes into a functionCf 1f 2
(r ) and the parti-

tion functionZf 11 f 2
(N) of the star withf 11 f 2 arms that is

formed when the cores of the two stars coincide:

Zf 1f 2
~N,r !;Cf 1f 2

~r !Zf 11 f 2
~N!. ~4!

Such a behavior is generally assumed in scaling argume
At a large star-star separation,Zf 1f 2

(N,r ) is the product of
the single star partition functions. Again we may argue t
the ratio of the partition function of two stars at finite sep
ration r to that at infinite separation can only be a functionB
of r /R1, noting thatR1 is the only relevant length scale i
this problem (Rf 1

and Rf 2
differ from R1 only in an

f-dependent prefactor!:

Zf 1f 2
~N,r !;Bf 1f 2

~r /R1!Zf 1
Zf 2

. ~5!

Taking this into account and inserting the power law scal
according to Eqs.~1! and ~2!, we find that Eqs.~4! and ~5!
are only compatible ifC(r ) also follows a power law

Cf 1f 2
~r !;r Q f 1f 2

(s)
, ~6!

and the so-called contact exponentQ f 1f 2

(s) obeys the scaling

relation

Q f 1f 2

(s) 5h f 1
1h f 2

2h f 11 f 2
. ~7!

Note that in terms of the RG of polymer field theory th
exponentsh f correspond to dimensions of operators asso
ated with the partition functions of single stars@54#, and
relation ~7! is a direct consequence of the short distance
pansion. The mean forceF f 1f 2

(r ) acting on the centers o

two star polymers withf 1 and f 2 arms is now derived as th
gradient of the effective potential Veff(r )5
2kBT log@Zf 1f 2

(r )/(Zf 1
Zf 2

)#, with kBT denoting the ther-
mal energy. For the force at short distancesr, this evidently
results in
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F f 1f 2
~r !5kBT

Q f 1f 2

(s)

r
. ~8!

Using the above many arm limit forh f , one may match the
contact exponentsQ f f

(s) to the known values forf 51,2 @59#,
fixing the otherwise unknown prefactor in Eq.~3!. Assuming
that the behavior of theQ f f

(s) may be described by this ap
proximation for allf, one finds:

F f f~r !'kBT
5

18

f 3/2

r
. ~9!

This matching in turn suggests an approximate value for
h f exponents, taking into accounth150 andh2'25/18:

h f'2
5

36

f 3/22 f

A221
. ~10!

Inserting this into the general formula for the interaction
two different star polymers, the contact exponent reads,
large f 1 and f 2,

Q f 1f 2

(s) 5
5

36

1

A221
@~ f 11 f 2!3/22~ f 1

3/21 f 2
3/2!#. ~11!

We note that on a phenomenological level there are o
possibilities to describe the interaction in a polydisperse s
tem of star polymers. In colloidal systems two other a
proaches to the interaction of polydisperse particles are c
monly used: In a steric stabilized system with
polydispersity in the radii of the particles, one expects to fi
an interaction radius that is thearithmetic meanof the radii
of the two interacting particles@44,60#. In a charge stabilized
solution, on the other hand, the interaction of two particle
proportional to the product of the two charges, and the eff
tive charge is calculated as thegeometric meanof the two
charges. The latter description was used in an earlier in
tigation of star polymers treatingf as an ‘‘effective charge’’
parameter@47,61,62#. For comparison with these other po
sible approaches, we define

Q f 1f 2

(a) ~r !5
5

18S f 11 f 2

2 D 3/2

, ~12!

Q f 1f 2

(g) ~r !5
5

18
~Af 1f 2!3/2. ~13!

We now turn to the interaction at larger separation. It w
recently shown that a Yukawa-like tail for the potential b
tween star polymers reproduces the results of both sim
tion and scattering experiments for monodisperse solut
@28,49,50#. The natural scale for a star polymer is the coro
diameters f52lRf , with l'2/3 @49#. For the potential be-
tween twof-arm star polymers at a distancer .s f , one has

Vf f~r !;
1

r
exp~2rk f !. ~14!
e

f
r

er
s-
-

-

d

s
c-

s-

s
-
a-
s

a

The decay length 1/k f52s f /Af is the diameter of the out
ermost blobs of the star polymer in the Daoud-Cotton mo
@1,28#.

In a simple but successful approach, the full potential
the interaction between twof-arm star polymers was con
structed by concatenating the long and short range potent
In this model the crossover from short to long range behav
takes place when the distance of the two cores iss f . It is
natural to generalize this to two star polymers withf 1 and f 2
arms, in such a way that the crossover point is at dista
s5(s f 1

1s f 2
)/2. It is less obvious how to choose the dec

length of the long range part. Our choice 1/k51/k f 1

11/k f 2
is in accordance to the simulation results presen

below. Note that although we have omitted the subscripts
s andk, the latter are functions off 1 and f 2.

The full potential then reads

1

kBT
Vf 1f 2

~r !5Q f 1f 2

(s) H 2 lnS r

s D1
1

11sk
for r<s

1

11sk

s

r
exp~sk2rk! for r .s.

~15!

In the monodisperse casef 15 f 2 this potential reduces to on
between two identical star polymers that was successf
tested in extensive simulations. Note that atr 5s the concat-
enated potential is smooth with a continuous first derivati
while the second derivative is in general discontinuous. T
in this approximation the force has a discontinuous slope
r 5s, as seen in the plots of Figs. 4 and 5 below.

III. COMPARISON WITH SIMULATION RESULTS

We have performed molecular dynamics computer sim
lations of two star polymers with different arm numbersf 1
and f 2 by resolving the monomers as classical beads al
the chains. We use the same simulation model as in prev
studies of star polymer solutions in a good solvent@49,63#.
The arm length, i.e., the numberN of beads along each
chain, was kept fixed toN550 and 100, which in previous
work was shown to be large enough to guarantee a suffic
scaling behavior. The main features of the simulation mo
can be summarized as follows.

~1! A purely repulsive and truncated Lennard-Jones
tential acts between allN( f 11 f 2) monomers at distancesr:

V0~r !5H 4eF S sLJ

r D 12

2S sLJ

r D 6

1
1

4G , r<21/6sLJ

0, r .21/6sLJ .

Heree sets the energy scale, andsLJ the length scale of the
beads.

~2! An attractive finite extensible nonlinear elastic pote
tial ~FENE! additionally acts between neighboring mon
mers along a chain@63#:

Vch5H 215eS R0

sLJ
D 2

lnF12S r

R0
D 2G , r<R0

`, r .R0 .
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This interaction diverges atr 5R0, which determines the
maximal relative displacement of two neighboring beads

~3! To accommodate the polymer arms, a hard core w
radiusR(d) is introduced at the center of the stars. The co
interact with the monomers according to the above m
tioned potentials with a separation shift ofR(d).

Two stars with arm numbersf 1 and f 2 were fixed at core
separationr. After a long equilibration period, the total forc
F f 1f 2

acting on the cores was averaged. The temperatuT

was kept constant. Both the equilibration time and the ti
during which averages were performed was about 10t

wheret5Ams2/e is the Lennard-Jones time unit withs, e,
andm denoting the Lennard-Jones length, the energy sc
and the monomer mass. A simulation snapshot is show
Fig. 1. When comparing the mean force to the derivative
the theoretical effective potential, two technical proble
arise:~i! In contrast to the theory, we have a finite core s
R(d) which is the same for both stars.~ii ! The two corona
diameterss f and (f 5 f 1 , f 2), which enter into the potentia
of Eq. ~15!, are not directly accessible in a simulation.

As in the monodisperse case@49#, difficulty ~i! is over-
come by plotting the inverse force 1/F f 1f 2

versus distancer.
The divergence in the force already occurs at core sep
tions r >2R(d) which leads to a zero in the 1/F f 1f 2

plot. The

inverseslopeof the 1/F f 1f 2
plot then corresponds to the pre

actorQ f 1f 2

(s) of the logarithmic term in the effective pair po

tential. It is this slope which can be directly compared to o
theoretical prediction@Eq. ~15!#. Furthermore, a linear func
tion in the 1/F f 1f 2

plot is a direct check for the validity of the

ln r term in the effective interaction potential,@Eq. ~15!#.
To handle difficulty~ii !, we consider the radius of gyra

tion Rf of each star, which is readily accessible in a simu
tion of a single star@49#. We assume a proportionality be
tweenRf ands f ,

s f52lRf , ~16!

FIG. 1. Snapshot of two interacting star polymers withf 1518
and f 2510 arms~dark and bright spheres, respectively! .
h
s
-

e

le,
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e
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-

and usel as a fit parameter to fit the full force versus di
tance curve for given arm numbersf 1 and f 2. The results for
the optimal fit parameter are shown in Table I. We obtain
averaged value of̂l&'0.66, which is nearly independent o
f 1 and f 2. Thus the results found here are consistent w
those from the previously investigated monodisperse c
@49#. We further remark that this value coincides with th
used in Ref.@28# to fit experimental data forf 518, and that
l is independent ofN, consistent with scaling theory.

Results for the comparison between theory and simula
are shown in Fig. 2, where the reduced inverse mean fo
1/F f 1f 2

between the star centers is plotted versus the in

core distancer for two arm numbersf 1510 andf 2550. We
observe two important facts: first, the data indeed fall on
straight line, proving the logarithmic behavior of the pote
tial inside the mean corona. The straight line hits the ori
at r 52R(d), showing the relevance of the finite core in th
simulations. Second, the inverse slopeQ f 1f 2

agrees very well
with the theoretical prediction also shown in Fig. 2. A sim
lar behavior was observed for all other combinations of a
numbers contained in Table I.

In Fig. 3, the prefactorQ f 1f 2
is plotted versusf 2, at a

TABLE I. List of the simulatedf 1-f 2 combinations and the
corresponding results forl5s/(Rf 1

1Rf 2
). N is the associated

monomer number per arm.

f 1 f 2 N l

3 5 100 0.511
5 10 100 0.643
5 18 100 0.667

10 18 50 0.675
10 30 50 0.673
10 50 50 0.692
18 30 50 0.696
18 50 50 0.668
30 50 50 0.714

FIG. 2. Reduced inverse forcekBT/(R12F f 1f 2
) between the cen-

ters of two star polymers~for f 1510, f 2550, andN550) vs re-
duced distancer /R12, where R125(Rf 1

1Rf 2
)/2. The error bars

were obtained by averaging over the results of ten indepen
simulations. The dashed line is a linear regression of the data.
solid line is the theory from chapter Sec. II.
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fixed valuef 1510, and compared with the different theore
ical predictions in Eqs.~11!–~13!. Of course, in the mono
disperse casef 15 f 2510, all the different theoretical expres
sions forQ f 1f 2

coincide, and agree well with the simulatio
consistently with our earlier work@49#. For increasing asym
metry betweenf 1 and f 2, significant deviations between th
predictions of~a! an arithmetic or~g! a geometric mean, an
the simulation results become visible. While the express
Q f 1f 2

(s) gained from scaling theory is able to describe the slo

even for large asymmetries,Q f 1f 2

(g) is worse at large asymme

tries, while Q f 1f 2

(a) even possesses the wrong curvature a

function of f 2. Similar conclusions hold for other combina
tions of f 1 and f 2.

In Fig. 4, we show the forceF f 1f 2
versus distancer

2R(d), scaled byR125(Rf 1
1Rf 2

)/2, comparing the theoreti

cal force with simulation results for three cases:f 1510,18,
and 30;f 2550; andN550. Note that formally the core siz
R(d) vanishes in the theory. There is a good overall agr
ment inside the corona region between theory and sim
tion, even for large asymmetries off 1 and f 2. Results for
distancesr outside the corona,r .s, are presented in Fig. 5
Here we test the exponential decay of the forceF f 1f 2

with

FIG. 3. Simulation results for the prefactorQ f 1f 2
for f 2

55, . . . ,50 andf 1510 fixed, in comparison to three different the
oretical predictions.

FIG. 4. Simulation results~symbols! and theoretical results
~lines! for the reduced effective forceR12F f 1f 2

/kBT vs reduced dis-
tance (r 22R(d))/R12.
n
e

a

-
a-

distancer by plotting the logarithm of the force versus di
tance. The crossover of the inner-core data to a straight
outside the core is clearly visible. Within the simulation err
bars, the slope is consistent with the theoretical predict
@Eq. ~15!#.

IV. POLYDISPERSITY EFFECTS IN DENSE STAR
POLYMER SOLUTIONS

To explore the effects of arm number polydispersity
the structure and phase behavior of dense solutions of
polymers, we further performed large scale Monte Ca
simulations using the pair potential approach, as given by
potential in Eq.~15!. Thus, on the one hand, this approa
closely corresponds to our recent work on the structural
phase behavior of monodisperse star polymer solutions@29–
31#, and, on the other hand, is quite similar to investigatio
of polydispersity effects in solutions of hard spher
@44,60,64,65# and charged colloidal particles@45,61,62,66#
available in the literature.

In our MC simulations, representative particle configu
tions of approximately 2000 star polymers in a cubic sim
lation box were created in the following manner. First,
starting particle configuration was built up by placing t
particles on random positions in the box, each particle
signed an arm numberf chosen from a Gaussian distributio

g( f ) of mean f̄ and variancep5Af 22 f̄ 2:

g~ f !5
2

pA2p
expF2

1

2p2
~ f 2 f̄ !2G . ~17!

We use Eq.~17! above todefinethe polydispersityp in what
follows. The Gaussian distribution chosen to describe a
number polydispersity agrees well with experimental
determined arm number distributions of star polymers s
thesized by anionic polymerization@50#. Note that nonphysi-
cal, negative arm numbers, which are in principle n
prohibited by a Gaussian arm number distribution, did n

FIG. 5. Logarithm of the reduced force, ln(R12F f 1f 2
/kBT), vs

reduced distance (r 22R(d))/R12, for f 1510, f 2518, andN550.
The error bars were obtained by averaging over the results of
independent simulations.



te
la
li
ti
ex
n
g

C
di

he
-

he
n

e

s to
a

y in
ge

rsi-

e-
star

of
e in

ter

c

tal

e
e

6954 PRE 62von FERBER, JUSUFI, WATZLAWEK, LIKOS, AND LO¨ WEN
occur in the simulations for the values off̄ and p chosen
here. Second, an equilibration phase of approxima
50 000 MC cycles was performed by allowing both trans
tional particle motion according to the standard Metropo
scheme, and particle exchanges of randomly chosen par
pairs, again using the Metropolis rule to decide whether
change will happen or not. For the calculation of pair pote
tial energies, Eq.~15! was used, together with the scalin
relation @1#

s f 1

s f 2

5S f 1

f 2
D 1/5

. ~18!

After the equilibration phase, approximately 100 000 M
cycles were simulated to gather statistics for both the ra
center-to-center distribution functiong(r ) and the center-to-
center structure factorS(k) @41,42,44,45,67#. In what fol-
lows, we will uses̄5s f̄ as the basic length scale, and t
mean packing fractionh̄5rs̄3p/6 (r being the number den
sity of the stars! as a measure of the density.

In order to investigate the polydispersity effects on t
liquid structure of dense star polymer solutions, simulatio

FIG. 6. ~a! Radial distribution functiong(r ) and ~b! center-to-
center structure factorS(k) for polydisperse star polymers in th
fluid state. In the MC simulations, the average arm number has b

chosen asf̄ 532, and the mean packing fraction ash̄50.5. Poly-
dispersitiesp as indicated in the figure.
ly
-
s
cle
-
-

al

s

with varying polydispersitiesp were performed at~average!
arm numbersf̄ and mean packing fractionsh̄, known to
correspond to the liquid state in the monodisperse casp
50 @30,31#. We show typical results forg(r ) and S(k) in
Fig. 6. As can be seen, increasing the polydispersity lead
decreasing spatial correlations in the fluid, indicated by
decreasing principal peak height of bothg(r ) and S(k).
Thus, as expected, the effect of arm number polydispersit
star polymer solutions is quite similar to the effect of char
polydispersity in solutions of charged colloids@45,66#. Note
that the anomalous behavior ofS(k) reported for monodis-
perse star polymer solutions in Ref.@29# also holds for poly-
disperse star polymer solution for all simulated polydispe
ties p<14.

In order to explore the evolution of the freezing and r
entrant melting phase transitions found for monodisperse
polymer solutions@30,31# with increasing polydispersity, we
employed the following strategy. We performed a number
simulations at state points corresponding to the solid phas
the monodisperse case, gradually increasing the paramep.
In particular, we chosef̄ 540 and h̄50.5 in a first set of
simulations. Our results forg(r ) andS(k) are given in Fig.
7. Let us begin with the discussion of theg(r ) data. As the
monodisperse casep50 corresponds to a solid state of bc
symmetry @30,31#, the showng(r ) is, in fact, the radially
averaged pair correlation function of the stars in the crys

en

FIG. 7. ~a! Radial distribution functiong(r ) and ~b! center-to-

center structure factorS(k) for f̄ 540, h̄50.5. Polydispersitiesp as
indicated in the figure.
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state.1 Again, increasingp leads to decreasing structural co
relations between the particles, indicated by a decrea
principal peak height and a ‘‘smearing out’’ of the sub pe
structure ofg(r ) seen forp50. This scenario also manifes
itself in the structure factors shown in Fig. 7~b!. Note that the
corresponding structure factor forp50 exhibits strong
Bragg peaks, again indicating the monodisperse system t
in the crystal state forf̄ 5 f 540 andh̄5h50.5, and is not
depicted for this reason. For nonzero polydispersities
simulated structure factors do not show Bragg peaks, and
value of the principal peak heightsSmax decreases. Thus in
creasing the polydispersity in a sample of star polymers
f̄ 5 f 540 andh̄5h50.5 leads to a melting transition from
bcc crystal to a fluid phase. We therefore expect polyd
perse star polymer solutions to show an enlarged fluid ph
region as compared to the phase diagram of monodisp
star polymers in Refs.@30,31#. Furthermore, the stability
range of the fluid phase is expected to increase with incr
ing polydispersityp. To corroborate this expectation in mo
detail, we performed further MC simulations of polydisper
star polymers for various state points (f̄ , h̄), all correspond-
ing to state points close to the freezing line or reentrant m
ing line in the monodisperse case@30,31#. For the ranges of
polydispersity examined here (p<14), no change in the to
pology of the phase diagram and no new crystalline pha
were found as a result of polydispersity. A quantitative c
culation of the full phase diagram by more sophistica
simulation methods@64,65# is beyond the scope of this pa
per, and will be left for future studies.

V. CONCLUSIONS

In conclusion, we have analyzed the effect of arm num
polydispersity on the effective interaction and structural c

1In fact, from the typical particle-particle distances read off fro
the pair correlation function, it can be concluded that the cry
structure is bcc, a result which is in agreement with calculation
bond order correlation functions@31#.
dv

n,
ng

be

e
he

at

-
se
se

s-

t-

es
-
d

r
-

relations between star polymers in a good solvent. An a
lytical expression for an effective pair potential, given by E
~15!, was put forward, and its validity was confirmed b
molecular dynamics computer simulation. This pair poten
was subsequently used to simulate structural correlations
tween many stars. As expected, correlations decrease
increasing polydispersity. At the same time, however,
effect is much less pronounced than for size-polydispe
hard spheres. This can be seen in analogy to colloidal
pensions, where size polydispersity of sterically stabiliz
suspensions is known to lead to much more pronounced
fects than charge polydispersity in charged suspension.
microscopic reason for this is that the effective interaction
much softer for charged colloids, which is similar to our ca
of star polymers.

We finish with a couple of remarks: first it would be in
teresting to compare, both qualitatively and quantitative
our theoretical predictions to experimental data. In fact,
intrinsic polydispersity in the arm number can be measur
and structural correlations are accessible, e.g., by neu
scattering of a star polymer solution with marked cores. S
ond, it would be interesting to map out, for a given polyd
persity, the full phase diagram, including freezing into d
ferent solid structures. Also, it would be interesting
develop and apply a liquid integral equation theory to pred
structural correlations in a polydisperse star polymer so
tions. The output of such a theory could be checked aga
our computer simulation data of Sec. IV. Third, we have n
considered a polydispersity in the length of the linear po
mer chains attached to the centers. It would be interestin
study this theoretically, and compare the results to sam
prepared in such a way that different linear chains
brought to the reaction centers of the dendrimers. W
along these lines is left for future studies.
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